Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise
نویسندگان
چکیده
We prove the path-by-path well-posedness of stochastic porous media and fast diffusion equations driven by linear, multiplicative noise. As a consequence, we obtain existence random dynamical system. This solves an open problem raised in [Barbu Röckner (2011) [4] ], (2018) [6] [Gess (2014) [11] ]. Nous prouvons le caractère bien posé, trajectoire-par-trajectoire, des équations milieux poreux et de rapide stochastiques, perturbées par un bruit linéaire multiplicatif. En conséquence, nous obtenons l'existence d'un système dynamique aléatoire. Cela résout problème soulevé dans
منابع مشابه
Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .
متن کاملWell-posedness and Ergodicity for Stochastic Reaction-diffusion Equations with Multiplicative Poisson Noise
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces.
متن کاملSymmetric path integrals for stochastic equations with multiplicative noise
A Langevin equation with multiplicative noise is an equation schematically of the form dq/dt=-F(q)+e(q)xi, where e(q)xi is Gaussian white noise whose amplitude e(q) depends on q itself. I show how to convert such equations into path integrals. The definition of the path integral depends crucially on the convention used for discretizing time, and I specifically derive the correct path integral w...
متن کاملNonlinear stochastic equations with multiplicative Lévy noise.
The Langevin equation with a multiplicative Lévy white noise is solved. The noise amplitude and the drift coefficient have a power-law form. A validity of ordinary rules of the calculus for the Stratonovich interpretation is discussed. The solution has the algebraic asymptotic form and the variance may assume a finite value for the case of the Stratonovich interpretation. The problem of escapin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2021.01.004