Partially linear additive quantile regression in ultra-high dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplemental Material to “ Partially Linear Additive Quantile Regression in Ultra - High Dimension

The tables of the appendix provide additional numerical results. Table 1 summarizes simulation results for Q-SCAD, LS-SCAD, Q-MCP, LS-MCP with sample sizes 50, 100 and 200 for modeling the 0.7 conditional quantile for the heteroscedastic error setting described in Section 4 of the main paper. The MCP approaches, Q-MCP and LS-MCP, are the equivalent of Q-SCAD and LS-SCAD with the SCAD penalty fu...

متن کامل

Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.

Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the ...

متن کامل

Partially linear censored quantile regression.

Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates ...

متن کامل

Quantile Regression in Partially Linear Varying Coefficient Models by Huixia

Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification...

متن کامل

Additive Models for Quantile Regression

We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2016

ISSN: 0090-5364

DOI: 10.1214/15-aos1367