Partial shape preserving approximations by bivariate shepard operators
نویسندگان
چکیده
منابع مشابه
Bivariate Shepard-Bernoulli operators
We extend the Shepard-Bernoulli operators introduced in [1] to the bivariate case. These new interpolation operators are realized by using local support basis functions introduced in [2] instead of classical Shepard basis functions and the bivariate three point extension [3] of the generalized Taylor polynomial introduced by F. Costabile in [4]. The new operators do not require either the use o...
متن کاملOn the bivariate Shepard-Lidstone operators
We propose a new combination of the bivariate Shepard operators [10] by the three point Lidstone polynomials introduced in [12]. The new combination inherits both degree of exactness and Lidstone interpolation conditions at each node, which characterize the interpolation polynomial. These new operators nd application to the scattered data interpolation problem when supplementary second order d...
متن کاملShepard-Bernoulli operators
We introduce the Shepard–Bernoulli operator as a combination of the Shepard operator with a new univariate interpolation operator: the generalized Taylor polynomial. Some properties and the rate of convergence of the new combined operator are studied and compared with those given for classical combined Shepard operators. An application to the interpolation of discrete solutions of initial value...
متن کاملPartial shape-preserving splines
A complex geometric shape is often a composition of a set of simple ones, which may differ from each other in terms of their mathematical representations and the ways in which they are constructed. One of the necessary requirements in combining these simple shapes is that their original shapes can be preserved as much as possible. In this paper, a set of partial shape-preserving (PSP) spline ba...
متن کاملSubdivision schemes for shape preserving approximations
We use subdivision schemes with general dilation to efficiently evaluate shape preserving approximations. To fulfill our goal the refinement rules of the schemes are obtained by the refinement masks associated to refinable ripplets, i.e. refinable functions whose integer translates form a variation diminishing basis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2001
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(01)00129-8