Partial Differential Equations with Quadratic Nonlinearities Viewed as Matrix-Valued Optimal Ballistic Transport Problems
نویسندگان
چکیده
We study a rather general class of optimal “ballistic” transport problems for matrix-valued measures. These naturally arise, in the spirit Brenier (Commun Math Phys 364(2):579–605, 2018), from certain dual formulation nonlinear evolutionary equations with particular quadratic structure reminiscent both incompressible Euler equation and Hamilton–Jacobi equation. The examples include ideal MHD, template matching equation, multidimensional Camassa–Holm (also known as $$H({{\,\mathrm{div}\,}})$$ geodesic equation), EPDiff, Euler- $$\alpha $$ , KdV Zakharov–Kuznetsov equations, motion isotropic elastic fluid damping-free Maxwell’s fluid. prove existence solutions to problems. For formally conservative problems, such above mentioned examples, solution problem determines “time-noisy” version original problem, latter one may be retrieved by time-averaging. This yields new type absolutely continuous time generalized initial-value PDE. also establish sharp upper bound on value explore weak–strong uniqueness issue.
منابع مشابه
Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
GMRES for oscillatory matrix-valued differential equations
We investigate the use of Krylov subspace methods to solve linear, oscillatory ODEs. When we apply a Krylov subspace method to a properly formulated equation, we retain the asymptotic accuracy of the asymptotic expansion whilst converging to the exact solution. We will demonstrate the effectiveness of this method by computing Error and Mathieu functions. Oxford University Computing Laboratory N...
متن کاملOptimal Control of Partial Differential Equations
1 Motivating Examples 4 1.1 Stationary Optimal Heating Problems . . . . . . . . . . . . . . . . . . . 4 1.1.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Boundary Control . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Distributed Control . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Transient Optimal Heating Problems . . . . . . . . . . ....
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2022
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-022-01754-8