Parsimonious reconstruction of network evolution
نویسندگان
چکیده
منابع مشابه
Parametric maximum parsimonious reconstruction on trees.
We give a formal study of the relationships between the transition cost parameters and the generalized maximum parsimonious reconstructions of unknown (ancestral) binary character states {0,1} over a phylogenetic tree. As a main result, we show there are two thresholds λ¹n and λ⁰n , generally confounded, associated to each node n of the phylogenetic tree and such that there exists a maximum par...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولGene Duplication Models and Reconstruction of Gene Regulatory Network Evolution from Network Structure
In this paper we study evolution of gene regulatory networks from the graph-theoretic perspective. We consider two gene duplication models that are based on those studied before, but are more general and/or mathematically more precise than previously published schemes. Our aims are to assess the biological appropriateness of the proposed models and to study the possibilities of reconstruction o...
متن کاملParsimonious Random Vector Functional Link Network for Data Streams
the theory of random vector functional link network (RVFLN) has provided a breakthrough in the design of neural networks (NNs) since it conveys solid theoretical justification of randomized learning. Existing works in RVFLN are hardly scalable for data stream analytics because they are inherent to the issue of complexity as a result of the absence of structural learning scenarios. A novel class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms for Molecular Biology
سال: 2012
ISSN: 1748-7188
DOI: 10.1186/1748-7188-7-25