Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs
نویسندگان
چکیده
منابع مشابه
Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs
Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the ...
متن کاملPredictive in silico modeling for hERG channel blockers.
hERG-mediated sudden death as a side effect of non-antiarrhythmic drugs has been receiving increased regulatory attention. Perhaps owing to the unique shape of the ligand-binding site and its hydrophobic character, the hERG channel has been shown to interact with pharmaceuticals of widely varying structure. Several in silico approaches have attempted to predict hERG channel blockade. Some of th...
متن کاملCytokine–Ion Channel Interactions in Pulmonary Inflammation
The lungs conceptually represent a sponge that is interposed in series in the bodies' systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung's constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunod...
متن کاملNovel screening techniques for ion channel targeting drugs
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophy...
متن کاملFractional diffusion modeling of ion channel gating.
An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Natl. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0150761