Parameter Inference for Biochemical Systems that Undergo a Hopf Bifurcation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

Hopf Bifurcation Calculations in Delayed Systems

A formal framework for the analysis of Hopf bifurcations in delay differential equations with a single time delay is presented. Closed-form linear algebraic equations are determined and the criticality of bifurcations is calculated by normal forms.

متن کامل

Hopf Bifurcation for a New Chaotic System

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given. Keyw...

متن کامل

A General Formula for Controlling Hopf Bifurcation

An explicit general formula is proposed for controlling Hopf bifurcation using state feedback. This method can be used to either delay (or even eliminate) an existing Hopf bifurcation or change a subcritical Hopf bifurcation to supercritical. The Lorenz system is used to illustrate the application of the formula.

متن کامل

Generalized Hopf bifurcation for non-smooth planar dynamical systems

In this paper, we study the existence of periodic orbits bifurcating from stationary solutions in a non-smooth planar dynamical system. This phenomenon is interpreted as generalized Hopf bifurcation. In the case of smoothness, Hopf bifurcation is characterized by a pair of complex conjugate eigenvalues crossing through the pure imaginary axis. This method does not apply to a non-smooth system d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2008

ISSN: 0006-3495

DOI: 10.1529/biophysj.107.126086