Parameter estimation in continuous time Markov switching models: a semi-continuous Markov chain Monte Carlo approach
نویسندگان
چکیده
منابع مشابه
Markov chain Monte Carlo for continuous-time discrete-state systems
A variety of phenomena are best described using dynamical models which operate on a discrete state space and in continuous time. Examples include Markov (and semiMarkov) jump processes, continuous-time Bayesian networks, renewal processes and other point processes. These continuous-time, discrete-state models are ideal building blocks for Bayesian models in fields such as systems biology, genet...
متن کاملMonte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the six free parameters that define the stellar and black hole mass functions at redshift zero. The model is tested against three differ...
متن کاملEfficient Continuous-Time Markov Chain Estimation
Many problems of practical interest rely on Continuous-time Markov chains (CTMCs) defined over combinatorial state spaces, rendering the computation of transition probabilities, and hence probabilistic inference, difficult or impossible with existing methods. For problems with countably infinite states, where classical methods such as matrix exponentiation are not applicable, the main alternati...
متن کاملMarkov chain Monte Carlo algorithms for SDE parameter estimation
This chapter considers stochastic differential equations for Systems Biology models derived from the Chemical Langevin Equation (CLE). After outlining the derivation of such models, Bayesian inference for the parameters is considered, based on state-of-the-art Markov chain Monte Carlo algorithms. Starting with a basic scheme for models observed perfectly, but discretely in time, problems with s...
متن کاملMarkov Chain Monte Carlo Methods for Switching Diffusion Models
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2009
ISSN: 1936-0975
DOI: 10.1214/09-ba402