Parallel block preconditioners for three-dimensional virtual element discretizations of saddle-point problems
نویسندگان
چکیده
منابع مشابه
A New Analysis of Block Preconditioners for Saddle Point Problems
We consider symmetric saddle point matrices. We analyze block preconditioners based on the knowledge of a good approximation for both the top left block and the Schur complement resulting from its elimination. We obtain bounds on the eigenvalues of the preconditioned matrix that depend only of the quality of these approximations, as measured by the related condition numbers. Our analysis applie...
متن کاملBlock LU Preconditioners for Symmetric and Nonsymmetric Saddle Point Problems
In this paper, a block LU preconditioner for saddle point problems is presented. The main diierence between the approach presented here and that of other studies is that an explicit, accurate approximation of the Schur complement matrix is eeciently computed. This is used to compute a preconditioner to the Schur complement matrix that in turn deenes a preconditioner for a global iteration. The ...
متن کاملPreconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *
We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...
متن کاملParallel Inexact Constraint Preconditioners for Saddle Point Problems
In this paper we propose a parallel implementation of the FSAI preconditioner to accelerate the PCG method in the solution of symmetric positive definite linear systems of very large size. This preconditioner is used as building block for the construction of an indefinite Inexact Constraint Preconditioner (ICP) for saddle point-type linear systems arising from Finite Element (FE) discretization...
متن کاملParallel Fully Coupled Schwarz Preconditioners for Saddle Point Problems∗
We study some parallel overlapping Schwarz preconditioners for solving Stokeslike problems arising from finite element discretization of incompressible flow problems. Most of the existing methods are based on the splitting of the velocity and pressure variables. With the splitting, fast solution methods are often constructed using various fast Poisson solvers for one of the variables. More rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2020
ISSN: 0045-7825
DOI: 10.1016/j.cma.2020.113424