Parallel attribute reduction in dominance-based neighborhood rough set
نویسندگان
چکیده
منابع مشابه
Variable-precision dominance-based rough set approach and attribute reduction
In this paper, a variable-precision dominance-based rough set approach (VP-DRSA) is proposed together with several VP-DRSA-based approaches to attribute reduction. The properties of VP-DRSA are shown in comparison to previous dominance-based rough set approaches. An advantage of VP-DRSA over variable-consistency dominance-based rough set approach in decision rule induction is emphasized. Some r...
متن کاملVariable Neighborhood Search for Attribute Reduction in Rough Set Theory
Attribute reduction is a combinational optimization problem in data mining domain that aims to find a minimal subset from a large set of attributes. The typical high dimensionality of datasets precludes the use of greedy methods to find reducts because of its poor adaptability, and requires the use of stochastic methods. Variable Neighborhood Search (VNS) is a recent metaheuristic and have been...
متن کاملAttribute Reduction Based on Approximation Set of Rough Set ⋆
Attribute reduction is one of the core issues of the rough set theory. The traditional method of attribute reduction was designed based on positive region unchanged, as abandoning processing the incompatible data in the boundary domain, so the classification characteristics of the reduction results are not necessarily best. In this paper, the concept of relative approximate degree is proposed i...
متن کاملAttribute Reduction in Utility-Based Decision-Theoretic Rough Set Models
Decision-theoretic rough set (DTRS) model, proposed by Yao in the early 1990’s, introduces Bayesian decision procedure and loss function in rough set theory. Considering utility function in decision processing, utility-based decision-theoretic rough set model (UDTRS) is given in this paper. The utility of the positive region, the boundary region and the negative region are obtained respectively...
متن کاملFuzzy-Rough set Approach to Attribute Reduction
Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2016
ISSN: 0020-0255
DOI: 10.1016/j.ins.2016.09.012