Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1
نویسندگان
چکیده
منابع مشابه
Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1
Bioengineering holds great promise to provide fast and efficient biocatalysts for methanol-based biotechnology, but necessitates proven methods to optimize physiology in engineered strains. Here, we highlight experimental evolution as an effective means for optimizing an engineered Methylobacterium extorquens AM1. Replacement of the native formaldehyde oxidation pathway with a functional analog...
متن کاملMetabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production
BACKGROUND Butanol is a promising next generation fuel and a bulk chemical precursor. Although clostridia are the primary industrial microbes for the fermentative production of 1-butanol, alternative engineered hosts have the potential to generate 1-butanol from alternative carbon feedstocks via synthetic metabolic pathways. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteo...
متن کاملThe second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1.
The nucleotide and deduced amino acid sequence of a novel small (beta) subunit of methanol dehydrogenase of Methylobacterium extorquens AM1 (previously Pseudomonas AM1) has been determined. Work with the whole protein has shown that is has an alpha 2 beta 2 configuration.
متن کاملGlyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1.
Most serine cycle methylotrophic bacteria lack isocitrate lyase and convert acetyl coenzyme A (acetyl-CoA) to glyoxylate via a novel pathway thought to involve butyryl-CoA and propionyl-CoA as intermediates. In this study we have used a genome analysis approach followed by mutation to test a number of genes for involvement in this novel pathway. We show that methylmalonyl-CoA mutase, an R-speci...
متن کاملThe NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The purified enzyme catalyzed the dehydrogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microorganisms
سال: 2015
ISSN: 2076-2607
DOI: 10.3390/microorganisms3020152