Packing Rectangles with Congruent Polyominoes
نویسندگان
چکیده
منابع مشابه
Tiling Rectangles and Half Strips with Congruent Polyominoes
Michael Reid Brown University February 23, 1996
متن کاملTiling rectangles with holey polyominoes
We present a new type of polyominoes that can have transparent squares (holes). We show how these polyominoes can tile rectangles and we categorise them according to their tiling ability. We were able to categorise all but 7 polyominoes with 5 or fewer visible squares.
متن کاملTiling a Square with Eight Congruent Polyominoes
The problem of finding polyominoes that tile rectangles has attracted a lot of attention; see [1] for an overview, and [2, 3] for more recent results. Several general families of such polyominoes are known, but sporadic examples seem to be scarce. Marshall [2, Fig. 9] gives a polyomino of rectangular order 8, and asks if it can be generalized to a family of rectifiable polyominoes. Here we show...
متن کاملPacking polyominoes clumsily
For a set D of polyominoes, a packing of the plane with D is a maximal set of copies of polyominoes from D that are not overlapping. A packing with smallest density is called a clumsy packing. We give an example of a set D such that any clumsy packing is aperiodic. In addition, we compute the smallest possible density of a clumsy packing when D consists of a single polyomino of a given size and...
متن کاملPacking anchored rectangles
Let S be a set of n points in the unit square [0, 1], one of which is the origin. We construct n pairwise interior-disjoint axis-aligned empty rectangles such that the lower left corner of each rectangle is a point in S, and the rectangles jointly cover at least a positive constant area (about 0.09). This is a first step towards the solution of a longstanding conjecture that the rectangles in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1997
ISSN: 0097-3165
DOI: 10.1006/jcta.1997.2730