p-Harmonic functions with boundary data having jump discontinuities and Baernstein's problem
نویسندگان
چکیده
منابع مشابه
Unilateral Boundary Value Problems with Jump Discontinuities
Using the critical point theory of Szulkin (1986), we study elliptic problems with unilateral boundary conditions and discontinuous nonlinearities. We do not use the method of upper and lower solutions. We prove two existence theorems: one when the right-hand side is nondecreasing and the other when it is nonincreasing. 1. Introduction. In this paper, using the critical-point theory of Szulkin ...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملSpatially Varying Coefficient Model for Neuroimaging Data with Jump Discontinuities.
Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient model (SVCM) to capture the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) with a set of covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise smooth regions with unkno...
متن کاملDetecting Strength and Location of Jump Discontinuities in Numerical Data
In [1] and some following publications, Tadmor and Gelb took up a well known property of conjugate Fourier series in 1-d, namely the property to detect jump discontinuities in given spectral data. In fact, this property of conjugate series is known for quite a long time. The research in papers around the year 1910 shows that there were also other means of detecting jumps observed and analysed. ...
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.03.002