$P$-convexity and $B$-convexity in Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On P- and p-Convexity of Banach Spaces

and Applied Analysis 3 Lemma 2.7 Goebel-Kirk . Let X be a Banach space. For each ε ∈ ε0 X , 2 , one has the equality δX 2 − 2δX ε 1 − ε/2. Lemma 2.8 Ullán . Let X be a Banach space. For each 0 ≤ ε2 ≤ ε1 < 2 the following inequality holds: δX ε1 − δX ε2 ≤ ε1 − ε2 / 2 − ε1 . Using these lemmas we obtain: Theorem 2.9. Let X be a Banach space which satisfies δX 1 > 0, that is, ε0 X < 1. Then X is P...

متن کامل

A Characterization of B-convexity and J-convexity of Banach Spaces

In [K.-I. Mitani and K.-S. Saito, J. Math. Anal. Appl. 327 (2007), 898–907] we characterized the strict convexity, uniform convexity and uniform non-squareness of Banach spaces using ψ-direct sums of two Banach spaces, where ψ is a continuous convex function with some appropriate conditions on [0, 1]. In this paper, we characterize the Bn-convexity and Jn-convexity of Banach spaces using ψ-dire...

متن کامل

Superreflexivity and J–convexity of Banach Spaces

Abstract. A Banach space X is superreflexive if each Banach space Y that is finitely representable in X is reflexive. Superreflexivity is known to be equivalent to J-convexity and to the non-existence of uniformly bounded factorizations of the summation operators Sn through X. We give a quantitative formulation of this equivalence. This can in particular be used to find a factorization of Sn th...

متن کامل

On Moduli of Convexity in Banach Spaces

Let X be a normed linear space, x ∈ X an element of norm one, and ε > 0 and δ(x,ε) the local modulus of convexity of X . We denote by ρ(x,ε) the greatest ρ≥ 0 such that for each closed linear subspace M of X the quotient mapping Q : X → X/M maps the open ε-neighbourhood of x in U onto a set containing the open ρ-neighbourhood of Q(x) in Q(U). It is known that ρ(x,ε) ≥ (2/3)δ(x,ε). We prove that...

متن کامل

Remarks on Orthogonal Convexity of Banach Spaces

It is proved that orthogonal convexity defined by A. JimenezMelado and E. Llorens-F'uster implies the weak Banach-Saks property. Relations between orthogonal convexity and another geometric properties, such as nearly uniform smoothness and property ( P ) , are studied. Introduction. Orthogonal convexity has been introduced by A. Jimenez-Melado and E. Llorens-F'uster (see [3] and [4]) as a geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1974-0333678-0