$p$-adic $L$-functions of Hilbert modular forms
نویسندگان
چکیده
منابع مشابه
Several Variables p-Adic L-Functions for Hida Families of Hilbert Modular Forms
After formulating Conjecture A for p-adic L-functions defined over ordinary Hilbert modular Hida deformations on a totally real field F of degree d, we construct two p-adic L-functions of d+1-variable depending on the parity of weight as a partial result on Conjecture A. We will also state Conjecture B which is a corollary of Conjecture A but is important by itself. Main issues of the construct...
متن کاملHILBERT MODULAR FORMS AND p-ADIC HODGE THEORY
We consider the p-adic Galois representation associated to a Hilbert modular form. Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a place not dividing p is compatible with the local Langlands correspondence [C2]. In this paper, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory [Fo], as is shown for an e...
متن کاملP-adic L-functions and P-adie Periods of Modular Forms*
Let E be an elliptic curve which is defined over Q and has stable reduction modulo a given prime p. Assuming that E is modular, one can associate to E a p-adic L-function Lp(E, s). (See [-Mz-SwD, A-V, Vi, Mz-T-T] for its construction in various cases.) This function is defined by a certain interpolation property and is analytic for seZp. In this paper, we will assume that E has split multiplica...
متن کاملAUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES
We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...
متن کاملMOCK MODULAR FORMS AS p-ADIC MODULAR FORMS
In this paper, we consider the question of correcting mock modular forms in order to obtain p-adic modular forms. In certain cases we show that a mock modular form M is a p-adic modular form. Furthermore, we prove that otherwise the unique correction of M is intimately related to the shadow of M.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1994
ISSN: 0373-0956
DOI: 10.5802/aif.1425