Oxidation‐led decomposition of hexagonal boron nitride coatings on alloy substrates at 900 °C: Chromia‐formers
نویسندگان
چکیده
منابع مشابه
TOPICAL REVIEW Graphene on Hexagonal Boron Nitride
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabricat...
متن کاملHexagonal boron nitride on transition metal surfaces
We validate a computational setup based on density functional theory to investigate hexagonal boron nitride (h-BN) monolayers grown on different transition metals exposing hexagonal surfaces. An extended assessment of our approach for the characterization of the geometrical and electronic structure of such systems is performed. Due to the lattice mismatch with the substrate, the monolayers can ...
متن کاملEFFECT OF PARTICLES CONCENTRATION AND CURRENT DENSITY ON THE COBALT/HEXAGONAL BORON NITRIDE NANO-COMPOSITE COATINGS PROPERTIES
Metal matrix composite coatings reinforced with nano-particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Cobalt/hexagonal boron nitride nano-composite coatings were prepared by means of the pulse current electroplating from a chloride electrolyte on copper substrates and a comparison was made with the pure cobalt in terms of...
متن کاملSuppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates.
We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials and Corrosion
سال: 2019
ISSN: 0947-5117,1521-4176
DOI: 10.1002/maco.201810532