Oxidation of (CD3)2\dotCX Radicals. II. Reaction of (CD3)2CHCl and (CD3)2\dotCCl Radicals with Atomic Oxygen
نویسندگان
چکیده
منابع مشابه
Computational Model of Reaction Mechanism of Alkyl Peroxy Radicals with Organic Compounds in the Presence and Absence of Oxygen
On the basis of experimental data a kinetic model for the heterogeneous interaction between alkylperoxyradicals and organic compounds in Langmuir- Hinshelwood approach at room temperature has been offered.The effect of oxygen on the kinetics of process in the presence, [O2]o = 1 x 1011 – 1.6 x 1012 molecules.cm-2, and absence of oxygen has been analyzed. Over time the chain degenerate branching...
متن کاملOxygen radicals and signaling.
Recent evidence suggests that reactive oxygen species, such as superoxide anions and hydrogen peroxide, function as intracellular second messengers. This review will discuss the progress in understanding the intracellular pathways leading from ligand stimulation to the generation of oxidants, as well as some of the increasing number of cellular processes that appear to be subject to redox regul...
متن کاملThe Oxidation of Formyl Radicals
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملInteractions of oxygen radicals with airway epithelium.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of numerous disease processes. Epithelial cells lining the respiratory airways are uniquely vulnerable regarding potential for oxidative damage due to their potential for exposure to both endogenous (e.g., mitochondrial respiration, phagocytic respiratory burst, cellular oxidases) and exogenous (e.g., air pollutants, xenobio...
متن کاملReaction of phenyl radicals with propyne.
The potential energy surface (PES) for the phenyl + propyne reaction, which might contribute to the growth of polycyclic aromatic hydrocarbons (PAHs) under a wide variety of reaction conditions, is described. The PES was characterized at the B3LYP-DFT/6-31G(d) and B3LYP-DFT/6-311+G(d,p) levels of theory. The energies of the entrance transition states, a direct hydrogen-transfer channel and two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Chemical Society of Japan
سال: 1987
ISSN: 0009-2673,1348-0634
DOI: 10.1246/bcsj.60.3751