Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications

نویسندگان

چکیده

Integral inequalities concerned with convexity have many applications in several fields of mathematics which symmetry plays an important role. In the theory convexity, there exist strong connections between and symmetry. If we are working on one concepts, then it can be applied to other them. this paper, establish some novel generalizations Ostrowski type for exponentially s-preinvex functions time scale by using Hölder inequality Montgomery Identity. We also obtain special means. These results motivated symmetric obtained recent article Abbasi Anwar 2022 s-convex scale. Moreover, discuss cases paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

Ostrowski Inequalities on Time Scales

We prove Ostrowski inequalities (regular and weighted cases) on time scales and thus unify and extend corresponding continuous and discrete versions from the literature. We also apply our results to the quantum calculus case.

متن کامل

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

ostrowski type inequalities for functions whose derivatives are preinvex

in this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15020410