Oscillation of difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation of Fractional Nonlinear Difference Equations

The oscillation criteria for forced nonlinear fractional difference equation of the form ∆x(t) + f1(t, x(t+ α)) =v(t) + f2(t, x(t+ α)), t ∈ N0, 0 < α ≤ 1, ∆x(t)|t=0 =x0, where ∆α denotes the Riemann-Liouville like discrete fractional difference operator of order α is presented. Mathematics Subject Classification: 26A33, 39A12

متن کامل

Oscillation of Higher-order Delay Difference Equations

where {pi(n)} are sequences of nonnegative real numbers and not identically equal to zero, and ki is positive integer, i = 1,2, . . . , and is the first-order forward difference operator, xn = xn+1− xn, and xn = l−1( xn) for l ≥ 2. By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn} satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be osci...

متن کامل

Oscillation of Nonlinear Delay Difference Equations

We obtain some oscillation criteria for solutions of the nonlinear delay difference equation of the form xn+1−xn+pn ∏m j=1x αj n−kj = 0. 2000 Mathematics Subject Classification. 39A10.

متن کامل

Oscillation Properties for Advanced Difference Equations

The oscillatory behavior of some differential and difference equations have been investigated (see, for instance, [1], [3], [4], [5]). In recent years, the oscillations of discrete analogues of delay differential equations have been given [2], [7]. Furthermore, explicit conditions for the oscillation of difference equations with constant coefficients have been studied [6]. Erbe and Zhang [2] ha...

متن کامل

Oscillation of a family of q-difference equations

We obtain the complete classification of oscillation and nonoscillation for the q-difference equation x(t) + b(−1) tc x(qt) = 0, b 6= 0, where t = q ∈ T = qN0 , q > 1, c, b ∈ R. In particular we prove that this q-difference equation is nonoscillatory, if c > 2 and is oscillatory, if c < 2. In the critical case c = 2 we show that it is oscillatory, if |b| > 1 q(q−1) , and is nonoscillatory, if |...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1993

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-65-1-25-32