Oscillation and nonoscillation for Caputo–Hadamard impulsive fractional differential inclusions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filippov’s Theorem for Impulsive Differential Inclusions with Fractional Order

In this paper, we present an impulsive version of Filippov’s Theorem for fractional differential inclusions of the form: D ∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, α ∈ (1, 2], y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, . . . ,m, y(t+k )− y (t−k ) = Ik(y (t−k )), k = 1, . . . ,m, y(0) = a, y′(0) = c, where J = [0, b], D ∗ denotes the Caputo fractional derivative and F is a setvalued ma...

متن کامل

Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients

In this paper we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.

متن کامل

Impulsive Partial Hyperbolic Differential Inclusions of Fractional Order

In this paper we investigate the existence of solutions of a class of partial impulsive hyperbolic differential inclusions involving the Caputo fractional derivative. Our main tools are appropriate fixed point theorems from multivalued analysis.

متن کامل

Fractional Order Impulsive Partial Hyperbolic Differential Inclusions with Variable Times

This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.

متن کامل

Oscillation and Nonoscillation Criteria for Second-order Linear Differential Equations

Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2019

ISSN: 1687-1847

DOI: 10.1186/s13662-019-2026-3