Orthogonality of linear combinations of two orthogonal polynomial sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?

Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., Qn(x) = Pn(x) + a1Pn−1(x) + · · ·+ akPn−k, ak 6= 0, n > k. Necessary and sufficient conditions are given for the orthogonality of the sequence {Qn}n≥0. An interesting interpretation in terms of the Jacobi matrices associated with {Pn}n≥0 and {Qn}n≥0 i...

متن کامل

On Linear Combinations of Orthogonal Polynomials

In this expository paper, linear combinations of orthogonal polynomials are considered. Properties like orthogonality and interlacing of zeros are presented.

متن کامل

Applications of CS decomposition in linear combinations of two orthogonal projectors

We study the spectrum and the rank of a linear combination of two orthogonal projectors. We characterize when this linear combination is EP, diagonalizable, idempotent, tripotent, involutive, nilpotent, generalized projector, and hypergeneralized projector. Also we derive the Moore-Penrose inverse of a linear combination of two orthogonal projectors in a particular case. The main tool used here...

متن کامل

Linear Combinations of Orthogonal Polynomials Generating Positive Quadrature Formulas

Let pk(x) = x +■■■ , k e N0 , be the polynomials orthogonal on [-1, +1] with respect to the positive measure da . We give sufficient conditions on the real numbers p , j = 0, ... , m , such that the linear combination of orthogonal polynomials YfLo^jPn-j has n simple zeros in (—1,-1-1) and that the interpolatory quadrature formula whose nodes are the zeros of Yfj=oßjPn-j has positive weights.

متن کامل

Zeros of linear combinations of Laguerre polynomials from different sequences

We study interlacing properties of the zeros of two types of linear combinations of Laguerre polynomials with different parameters, namely Rn = L α n + aL α n and Sn = L α n + bL α n−1. Proofs and numerical counterexamples are given in situations where the zeros of Rn, and Sn, respectively, interlace (or do not in general) with the zeros of L α k , L ′ k , k = n or n− 1. The results we prove ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2001

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(00)00702-0