Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Dual Hyperovals, Symplectic Spreads and Orthogonal Spreads

Orthogonal spreads in orthogonal spaces of type V (2n + 2, 2) produce large numbers of rank n dual hyperovals in orthogonal spaces of type V (2n, 2). The construction resembles the method for obtaining symplectic spreads in V (2n, q) from orthogonal spreads in V (2n + 2, q) when q is even.

متن کامل

Orthogonal spreads and translation planes

There have been a number of striking new results concerning translation planes of characteristic 2, obtained using orthogonal and symplectic spreads. The impetus for this came from coding theory. This paper surveys the geometric advances, while providing a hint of their coding{theoretic connections.

متن کامل

Symplectic spreads and symplectically paired spreads

If π is a finite symplectic translation plane, it is shown that any affine homology group is cyclic and has order dividing the order of the kernel homology group. This criterion provides a means to ensure that a given spread is not symplectic. Furthermore, a variety of symplectically paired André spreads are constructed.

متن کامل

Symplectic Spreads

We construct an infinite family of symplectic spreads in spaces of odd rank and characteristic.

متن کامل

Partial ovoids and partial spreads in symplectic and orthogonal polar spaces

We present improved lower bounds on the sizes of small maximal partial ovoids and small maximal partial spreads in the classical symplectic and orthogonal polar spaces, and improved upper bounds on the sizes of large maximal partial ovoids and large maximal partial spreads in the classical symplectic and orthogonal polar spaces. An overview of the status regarding these results is given in tabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2014

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-014-0528-3