Orthogonal Decomposition of Symmetric Tensors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy Approaches to Symmetric Orthogonal Tensor Decomposition

Finding the symmetric and orthogonal decomposition (SOD) of a tensor is a recurring problem in signal processing, machine learning and statistics. In this paper, we review, establish and compare the perturbation bounds for two natural types of incremental rank-one approximation approaches. Numerical experiments and open questions are also presented and discussed.

متن کامل

Symmetric Orthogonal Tensor Decomposition is Trivial

We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of a...

متن کامل

Orthogonal Decomposition Defined by a Pair of Skew-Symmetric Forms

Proof. We use induction on n. For n = 1, the result is immediate, First, observe there exist linear transformations Ui (i = 1, 2): X + X such that (U,x, y) = &(x, y). For define&: X -R by Liz(y) = #Q(x, y). Then L,, is a linear functional and since X is an inner product space, there exists Z< E X with L,,(y) = (zi, y) by the canonical isomorphism between X and its dual. Define the transformatio...

متن کامل

Symmetric nonnegative tensors and copositive tensors

Article history: Received 6 December 2012 Accepted 11 March 2013 Available online 8 April 2013 Submitted by R.A. Brualdi AMS classification: 15A18 15A69

متن کامل

Symmetric Tensors and Symmetric Tensor Rank

A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2016

ISSN: 0895-4798,1095-7162

DOI: 10.1137/140989340