Orientation dependence of the Schottky barrier height for La0.6Sr0.4MnO3/SrTiO3 heterojunctions
نویسندگان
چکیده
منابع مشابه
Charge carrier induced barrier height reduction at organic heterojunctions
In order to provide an accurate theoretical description of current density voltage (J −V ) characteristics of an organic heterojunction device over a wide range of electric fields at various temperatures, it is proposed that an accumulation of charge carriers at the heterojunction will lead to a reduction in the barrier height across the heterojunction. Two well-known hole transporting material...
متن کاملInhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.
Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by curre...
متن کاملSchottky barriers in carbon nanotube heterojunctions
Electronic properties of heterojunctions between metallic and semiconducting single-wall carbon nanotubes are investigated. Ineffective screening of the long-range Coulomb interaction in one-dimensional nanotube systems drastically modifies the charge transfer phenomena compared to conventional semiconductor heterostructures. The length of depletion region varies over a wide range sensitively d...
متن کاملNovel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions
Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm(2)/V · s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2009
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3154523