Orientable 4-manifolds topologically embed into R7

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 191 Orientable Octahedral Manifolds

We enumerate all spaces obtained by gluing in pairs the faces of the octahedron in an orientation-reversing fashion. Whenever such a gluing gives rise to non-manifold points, we remove small open neighbourhoods of these points, so we actually deal with three-dimensional manifolds with (possibly empty) boundary. There are 298 combinatorially inequivalent gluing patterns, and we show that they de...

متن کامل

Non-orientable 3-manifolds of small complexity

We classify all closed non-orientable P-irreducible 3-manifolds having complexity up to 6 and we describe some having complexity 7. We show in particular that there is no such manifold with complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones and the filling of the Gieseking manifold, which is of type Sol. The manifolds having complexity 7 we d...

متن کامل

Finding Non-Orientable Surfaces in 3-Manifolds

We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known ...

متن کامل

Lefschetz coincidence formula on non-orientable manifolds

We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.

متن کامل

Non-orientable manifolds of small complexity

We classify all closed non-orientable P-irreducible manifolds having complexity up to 6 and we describe some having complexity 7. We show in particular that there is no such manifold with complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones. The manifolds having complexity 7 we describe are Seifert manifolds of type H × S and manifolds with non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2002

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(01)00002-7