Orbifold Zeta Functions for Dual Invertible Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbifold Euler Characteristics for Dual Invertible Polynomials

To construct mirror symmetric Landau–Ginzburg models, P. Berglund, T. Hübsch and M. Henningson considered a pair (f, G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair (f̃ , G̃). Here we study the reduced orbifold Euler characteristics of the Milnor fibers of f and f̃ with the actions of the groups G and G̃ respectively and show that they ...

متن کامل

Monodromy of Dual Invertible Polynomials

A generalization of Arnold’s strange duality to invertible polynomials in three variables by the first author and A. Takahashi includes the following relation. For some invertible polynomials f the Saito dual of the reduced monodromy zeta function of f coincides with a formal “root” of the reduced monodromy zeta function of its Berglund– Hübsch transpose f . Here we give a geometric interpretat...

متن کامل

Deformations of polynomials and their zeta functions

For an analytic in σ ∈ (C, 0) family Pσ of polynomials in n variables there is defined a monodromy transformation h of the zero level set Vσ = {Pσ = 0} for σ 6= 0 small enough. The zeta function of this monodromy transformation is written as an integral with respect to the Euler characteristic of the corresponding local data. This leads to a study of deformations of holomorphic germs and their ...

متن کامل

Igusa’s Local Zeta Functions of Semiquasihomogeneous Polynomials

In this paper, we prove the rationality of Igusa’s local zeta functions of semiquasihomogeneous polynomials with coefficients in a non-archimedean local field K. The proof of this result is based on Igusa’s stationary phase formula and some ideas on Néron π-desingularization.

متن کامل

Holomorphy of Igusa’s and Topological Zeta Functions for Homogeneous Polynomials

Let F be a number field and f ∈ F [x1, . . . , xn] \ F . To any completion K of F and any character κ of the group of units of the valuation ring of K one associates Igusa’s local zeta function Z(κ, f, s). The holomorphy conjecture states that for all except a finite number of completions K of F we have that if the order of κ does not divide the order of any eigenvalue of the local monodromy of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2016

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091516000043