Optoelectronic Neuromorphic Computing: All‐Optically Controlled Memristor for Optoelectronic Neuromorphic Computing (Adv. Funct. Mater. 4/2021)
نویسندگان
چکیده
In article number 2005582, Fei Zhuge and co-workers develop an all-optically controlled (AOC) analog memristor based on the relatively mature material InGaZnO. The memconductance is reversibly tunable over a continuous range by varying only wavelength of controlling light. light-induced multiple states are nonvolatile. This device has promising applications in AOC spiking neural networks for highly efficient optoelectronic neuromorphic computing.
منابع مشابه
Superconducting optoelectronic circuits for neuromorphic computing
We propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights...
متن کاملA Memristor-based Neuromorphic Computing Application
Artificial neural networks have recently received renewed interest because of the discovery of the memristor. The memristor is the fourth basic circuit element, hypothesized to exist by Leon Chua in 1971 and physically realized in 2008. The two-terminal device acts like a resistor with memory and is therefore of great interest for use as a synapse in hardware ANNs. Recent advances in memristor ...
متن کاملCMOS and Memristor Technologies for Neuromorphic Computing Applications
In this work, I present a CMOS implementation of a neuromorphic system that aims to mimic the behavior of biological neurons and synapses in the human brain. The synapse is modeled with a memristor-resistor voltage divider, while the neuron-emulating circuit (“CMOS Neuron”) comprises transistors and capacitors. The input aggregation and output firing characteristics of a CMOS Neuron are based o...
متن کاملStochastic induced dynamics in neuromorphic optoelectronic oscillators
We investigate the dynamics of optoelectronic oscillator (OEO) systems based on resonant tunneling diode photodetector (RTD-PD) and laser diode hybrid integrated circuits. We demonstrate that RTD-based OEOs can be noise-activated in either monostable or bistable operating conditions, providing a rich variety of signal outputs—spiking, square pulses, bursting—and behaviours—stochastic and cohere...
متن کاملIntegration of nanoscale memristor synapses in neuromorphic computing architectures
Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Functional Materials
سال: 2021
ISSN: ['1616-301X', '1616-3028']
DOI: https://doi.org/10.1002/adfm.202170027