Optimization of some eigenvalue problems with large drift

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Unusual Matrix Eigenvalue Problems

We survey some unusual eigenvalue problems arising in different applications. We show that all these problems can be cast as problems of estimating quadratic forms. Numerical algorithms based on the well-known Gauss-type quadrature rules and Lanczos process are reviewed for computing these quadratic forms. These algorithms reference the matrix in question only through a matrix-vector product op...

متن کامل

Polynomial Optimization Problems are Eigenvalue Problems

Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...

متن کامل

The Numerical Treatment of Large Eigenvalue Problems

This paper surveys techniques for calculating eigenvalues and eigenvectors of very large matrices.

متن کامل

Some Developments on Parameterized Inverse Eigenvalue Problems

A comprehensive survey of some recent results regarding parameterized inverse eigenvalue problems is given in this paper. Speciic topics include: additive and multiplicative inverse eigenvalue problems, classical inverse eigenvalue problems and generalized inverse eigenvalue problems. Both the theoretic and algorithmic aspects are reviewed. Some open problems are revealed to stimulate further r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2018

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2018.1477801