منابع مشابه
Skew-Gaussian Random Fields
Skewness is often present in a wide range of spatial prediction problems, and modeling it in the spatial context remains a challenging problem. In this study a skew-Gaussian random field is considered. The skew-Gaussian random field is constructed by using the multivariate closed skew-normal distribution, which is a generalization of the traditional normal distribution. We present an Metropolis...
متن کاملGaussian Process Random Fields
Gaussian processes have been successful in both supervised and unsupervised machine learning tasks, but their computational complexity has constrained practical applications. We introduce a new approximation for large-scale Gaussian processes, the Gaussian Process Random Field (GPRF), in which local GPs are coupled via pairwise potentials. The GPRF likelihood is a simple, tractable, and paralle...
متن کاملNeural Gaussian Conditional Random Fields
We propose a Conditional Random Field (CRF) model for structured regression. By constraining the feature functions as quadratic functions of outputs, the model can be conveniently represented in a Gaussian canonical form. We improved the representational power of the resulting Gaussian CRF (GCRF) model by (1) introducing an adaptive feature function that can learn nonlinear relationships betwee...
متن کاملGenerating Cosmological Gaussian Random Fields
We present a generic algorithm for generating Gaussian random initial conditions for cosmological simulations on periodic rectangular lattices. We show that imposing periodic boundary conditions on the real-space correlator and choosing initial conditions by convolving a white noise random field results in a significantly smaller error than the traditional procedure of using the power spectrum....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2015
ISSN: 1064-8275,1095-7197
DOI: 10.1137/140992187