Optimising Poisson bridge constructions for variance reduction methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Reduction Methods for Sublinear Reinforcement Learning

This work considers the problem of provably optimal reinforcement learning for (episodic) finite horizon MDPs, i.e. how an agent learns to maximize his/her (long term) reward in an uncertain environment. The main contribution is in providing a novel algorithm — Variance-reduced Upper Confidence Q-learning (vUCQ) — which enjoys a regret bound of Õ( √ HSAT +HSA), where the T is the number of time...

متن کامل

Stochastic Variance Reduction Methods for Policy Evaluation

Policy evaluation is a crucial step in many reinforcement-learning procedures, which estimates a value function that predicts states’ longterm value under a given policy. In this paper, we focus on policy evaluation with linear function approximation over a fixed dataset. We first transform the empirical policy evaluation problem into a (quadratic) convex-concave saddle point problem, and then ...

متن کامل

Introduction to variance reduction methods

All the results of the preceding lecture show that the ratio σ/ √ N governs the accuracy of a Monte-Carlo method with N simulations. An obvious consequence of this fact is that one always has interest to rewrite the quantity to compute as the expectation of a random variable which has a smaller variance : this is the basic idea of variance reduction techniques. For complements, we refer the rea...

متن کامل

Variance Reduction Techniques in Monte Carlo Methods

Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the introduction of computers. This increased computer power has stimulated simulation analysts to develo...

متن کامل

Variance Reduction Methods I 1 Simulation Efficiency

Suppose as usual that we wish to estimate θ := E[h(X)]. Then the standard simulation algorithm is: 2. Estimate θ with θ n = n j=1 Y j /n where Y j := h(X j). 3. Approximate 100(1 − α)% confidence intervals are then given by θ n − z 1−α/2 σ n √ n , θ n + z 1−α/2 σ n √ n where σ n is the usual estimate of Var(Y) based on Y 1 ,. .. , Y n. One way to measure the quality of the estimator, θ n , is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monte Carlo Methods and Applications

سال: 2021

ISSN: 1569-3961,0929-9629

DOI: 10.1515/mcma-2021-2090