Optimality Conditions for Quadratic Programming Problems in Hilbert Spaces
نویسندگان
چکیده
In this paper, we give optimality conditions for the quadratic programming problems with constraints defined by finitely many convex in Hilbert spaces. As special cases, obtain under linear
منابع مشابه
New optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملGlobal Optimality Conditions for Quadratic Optimization Problems with Binary Constraints
We consider nonconvex quadratic optimization problems with binary constraints. Our main result identifies a class of quadratic problems for which a given feasible point is global optimal. We also establish a necessary global optimality condition. These conditions are expressed in a simple way in terms of the problem’s data. We also study the relations between optimal solutions of the nonconvex ...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملFirst order optimality conditions for generalized semi-infinite programming problems
In this paper we study first order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various wellknown constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs take...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2021
ISSN: ['1027-5487', '2224-6851']
DOI: https://doi.org/10.11650/tjm/210303