Optimal results for the fractional heat equation involving the Hardy potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Existence and Uniqueness Theory for the Fractional Heat Equation

We construct a theory of existence, uniqueness and regularity of solutions for the fractional heat equation ∂tu + (−∆) s u = 0, 0 < s < 1, posed in the whole space R with data in a class of locally bounded Radon measures that are allowed to grow at infinity with an optimal growth rate. We consider a class of nonnegative weak solutions and prove that there is an equivalence between nonnegative d...

متن کامل

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

متن کامل

Optimal results for a time-fractional inverse diffusion problem under the Hölder type source condition

‎In the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

متن کامل

Optimal filtering for the backward heat equation

For the backwards heat equation, stabilized by an a priori initial bound, an estimator is determined for intermediate values which is optimal with respect to the bound and the observation accuracy. It is shown how this may be implemented computationally with error estimates for the computed approximation which can be made arbitrarily close to the uncertainty level induced by the ill-posedness o...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2016

ISSN: 0362-546X

DOI: 10.1016/j.na.2016.03.013