Optimal Regulation of Impulsive Fractional Differential Equation with Delay and Application to Nonlinear Fractional Heat Equation
نویسندگان
چکیده
منابع مشابه
Brenstien polynomials and its application to fractional differential equation
The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملPeriodic boundary value problems for nonlinear impulsive fractional differential equation
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملbrenstien polynomials and its application to fractional differential equation
the paper is devoted to the study of brenstien polynomials and development of some new operational matrices of fractional order integrations and derivatives. the operational matrices are used to convert fractional order differential equations to systems of algebraic equations. a simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2013
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v5n2p94