Optimal Prediction of Forecast Error Covariances through Singular Vectors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Forecast Error Covariances for Strongly Coupled Atmosphere–Ocean 4D-Var Data Assimilation

Strongly coupled data assimilation emulates the real-world pairing of the atmosphere andocean by solving the assimilation problem in terms of a single combined atmosphere–ocean state. A significant challenge in strongly coupled variational atmosphere–ocean data assimilation is a priori specification of the cross covariances between the errors in the atmosphere and ocean model forecasts. These c...

متن کامل

A Decomposition of Forecast Error in Prediction Markets

We introduce and analyze sources of error in prediction market forecasts in order to characterize and bound the difference between a security’s price and its ground truth value. We consider cost-function-based prediction markets in which an automated market maker adjusts security prices according to the history of trade. We decompose the forecasting error into four components: sampling error, o...

متن کامل

Probabilistic Mesoscale Forecast Error Prediction Using Short-Range Ensembles

Probabilistic Mesoscale Forecast Error Prediction Using Short-Range Ensembles

متن کامل

Forecast covariances in the linear multiregression dynamic model

Abstract The linear multiregression dynamic model (LMDM) is a Bayesian dynamic model which preserves any conditional independence and causal structure across a multivariate time series. The conditional independence structure is used to model the multivariate series by separate (conditional) univariate dynamic linear models, where each series has contemporaneous variables as regressors in its mo...

متن کامل

A comparison of sequential assimilation schemes for ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM): Twin experiments with static forecast error covariances

We assess and compare four sequential data assimilation methods developed for HYCOM in an identical twin experiment framework. The methods considered are Multi-variate Optimal Interpolation (MVOI), Ensemble Optimal Interpolation (EnOI), the fixed basis version of the Singular Evolutive Extended Kalman Filter (SEEK) and the Ensemble Reduced Order Information Filter (EnROIF). All methods can be c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Atmospheric Sciences

سال: 1997

ISSN: 0022-4928,1520-0469

DOI: 10.1175/1520-0469(1997)054<0286:opofec>2.0.co;2