Optimal-order uniform and nonuniform bounds on the rate of convergence to normality for maximum likelihood estimators
نویسندگان
چکیده
منابع مشابه
The Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملA note on “Convergence rates and asymptotic normality for series estimators”: uniform convergence rates
This paper establishes improved uniform convergence rates for series estimators. Series estimators are least-squares fits of a regression function where the number of regressors depends on sample size. I will specialize my results to the cases of polynomials and regression splines. These results improve upon results obtained earlier by Newey, yet fail to attain the optimal rates of convergence....
متن کاملSome upper bounds for the rate of convergence of penalized likelihood context tree estimators
Abstract. We find upper bounds for the probability of underestimation and overestimation errors in penalized likelihood context tree estimation. The bounds are explicit and applies to processes of not necessarily finite memory. We allow for general penalizing terms and we give conditions over the maximal depth of the estimated trees in order to get strongly consistent estimates. This generalize...
متن کاملOn the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution
Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...
متن کاملExponential rate of convergence of maximum likelihood estimators for inhomogeneous Wiener processes
The distribution of an inhomogeneous Wiener process is determined by the mean function m(t) ss EW(t) and the variance function b(t) = V^(W(t)) which depend on unknown parameter d _ 0 . Observations are assumed to be in discrete time points where the sample size tends to infinity. Using the general theory of Ibragimow, Hasminskij [2] sufficient conditions for consistency of MLE i?n are establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2017
ISSN: 1935-7524
DOI: 10.1214/17-ejs1264