Optimal model averaging estimator for multinomial logit models
نویسندگان
چکیده
In this paper, we study optimal model averaging estimators of regression coefficients in a multinomial logit model, which is commonly used many scientific fields. A Kullback–Leibler (KL) loss-based weight choice criterion developed to determine weights. Under some regularity conditions, prove that the resulting are asymptotically optimal. When true one candidate models, averaged consistent. Simulation studies suggest superiority proposed method over selection criterions, methods, as well other related methods terms KL loss and mean squared forecast error. Finally, website phishing data illustrate method.
منابع مشابه
Frequentist model averaging for multinomial and ordered logit models
Multinomial and ordered Logit models are quantitative techniques which are used in a range of disciplines nowadays. When applying these techniques, practitioners usually select a single model using either information-based criteria or pretesting. In this paper, we consider the alternative strategy of combining models rather than selecting a single model. Our strategy ofweight choice for the can...
متن کاملOn Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model
In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...
متن کاملMultinomial logit random effects models
This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationall...
متن کاملThe Generalized Multinomial Logit Model
The so-called “mixed” or “heterogeneous” multinomial logit (MIXL) model has become popular in a number of fields, especially Marketing, Health Economics and Industrial Organization. In most applications of the model, the vector of consumer utility weights on product attributes is assumed to have a multivariate normal (MVN) distribution in the population. Thus, some consumers care more about som...
متن کاملMultinomial logit models with implicit variable selection
Multinomial logit models which are most commonly used for the modeling of unordered multi-category responses are typically restricted to the use of few predictors. In the high-dimensional case maximum likelihood estimates frequently do not exist. In this paper we are developing a boosting technique called multinomBoost that performs variable selection and fits the multinomial logit model also w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical theory and related fields
سال: 2022
ISSN: ['2475-4269', '2475-4277']
DOI: https://doi.org/10.1080/24754269.2022.2037204