Optimal Hedging with the Vector Autoregressive Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is First-Order Vector Autoregressive Model Optimal for fMRI Data?

We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and...

متن کامل

Model Uncertainty in Panel Vector Autoregressive Models

We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, t...

متن کامل

A Vector Autoregressive ENSO Prediction Model

The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño–Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VARmodel implicitly captures subsurface forcing ob...

متن کامل

Vector Autoregressive Model for Missing Feature Reconstruction

This paper proposes a Vector Autoregressive (VAR) model as a new technique for missing feature reconstruction in ASR. We model the spectral features using multiple VAR models. A VAR model predicts missing features as a linear function of a block of feature frames. We also propose two schemes for VAR training and testing. The experiments on AURORA-2 database have validated the modeling methodolo...

متن کامل

Supplement: Estimating Structured Vector Autoregressive Model

Consider a vector autoregressive (VAR) model of order d: xt = A1xt−1 + . . .+Adxt−d + t, t = 0,±1,±2, . . . , (1) where xt ∈ R is a random vector, Ai ∈ Rp×p, i = 1, . . . , d are fixed coefficient matrices and t is a vector of zero-mean white noise, i.e., E( t) = 0, E( t t ) = Σ and E( t T t+h) = 0, for h 6= 0. We assume that the noise covariance matrix Σ is positive definite with bounded large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2014

ISSN: 1556-5068

DOI: 10.2139/ssrn.2395970