Optimal generalized Heronian mean bounds for the logarithmic mean

نویسندگان
چکیده

منابع مشابه

Optimal Lower Generalized Logarithmic Mean Bound for the Seiffert Mean

Ying-Qing Song, Wei-Mao Qian, Yun-Liang Jiang, and Yu-Ming Chu 1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang, Hunan 413000, China 2 School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China 3 School of Information & Engineering, Huzhou Teachers College, Huzhou, Zhejiang 313000, China Correspondence should be addressed to Y...

متن کامل

Sharp bounds by the power mean for the generalized Heronian mean

* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China Full list of author information is available at the end of the article Abstract In this article, we answer the question: For p, ω Î R with ω >0 and p(ω 2) ≠ 0, what are the greatest value r1 = r1(p, ω) and the least value r2 = r2(p, ω) such that the double inequality Mr1 (a, b) ...

متن کامل

Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean

In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two posi...

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-63