Optimal full ranking from pairwise comparisons

نویسندگان

چکیده

We consider the problem of ranking n players from partial pairwise comparison data under Bradley–Terry–Luce model. For first time in literature, minimax rate this is derived with respect to Kendall’s tau distance that measures difference between two rank vectors by counting number inversions. The exhibits a transition an exponential and polynomial depending on magnitude signal-to-noise ratio problem. To best our knowledge, phenomenon unique full has not been seen any other statistical estimation achieve rate, we propose divide-and-conquer algorithm divides into groups similar skills then computes local MLE within each group. optimality proposed established careful approximate independence argument steps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Ranking from Pairwise Comparisons

The ranking of n objects based on pairwise comparisons is a core machine learning problem, arising in recommender systems, ad placement, player ranking, biological applications and others. In many practical situations the true pairwise comparisons cannot be actively measured, but a subset of all n(n−1)/2 comparisons is passively and noisily observed. Optimization algorithms (e.g., the SVM) coul...

متن کامل

Approximate Ranking from Pairwise Comparisons

A common problem in machine learning is to rank a set of n items based on pairwise comparisons. Here ranking refers to partitioning the items into sets of pre-specified sizes according to their scores, which includes identification of the top-k items as the most prominent special case. The score of a given item is defined as the probability that it beats a randomly chosen other item. Finding an...

متن کامل

Simple, Robust and Optimal Ranking from Pairwise Comparisons

We consider data in the form of pairwise comparisons of n items, with the goal of precisely identifying the top k items for some value of k < n, or alternatively, recovering a ranking of all the items. We analyze the Copeland counting algorithm that ranks the items in order of the number of pairwise comparisons won, and show it has three attractive features: (a) its computational efficiency lea...

متن کامل

Rank Centrality: Ranking from Pairwise Comparisons

The question of aggregating pairwise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g. MSR’s TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding ‘scores’ for each obj...

متن کامل

Passive and Active Ranking from Pairwise Comparisons

In the problem of ranking from pairwise comparisons, the learner has access to pairwise preferences among n objects and is expected to output a total order of these objects. This problem has a wide range of applications not only in computer science but also in other areas such as social science and economics. In this report, we will give a survey of passive and active learning algorithms for ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Statistics

سال: 2022

ISSN: ['0090-5364', '2168-8966']

DOI: https://doi.org/10.1214/22-aos2175