Optimal existence and uniqueness theory for the fractional heat equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Existence and Uniqueness Theory for the Fractional Heat Equation

We construct a theory of existence, uniqueness and regularity of solutions for the fractional heat equation ∂tu + (−∆) s u = 0, 0 < s < 1, posed in the whole space R with data in a class of locally bounded Radon measures that are allowed to grow at infinity with an optimal growth rate. We consider a class of nonnegative weak solutions and prove that there is an equivalence between nonnegative d...

متن کامل

Existence and Uniqueness Theory for the Fractional Schrödinger Equation on the Torus

We study the Cauchy problem for the 1-d periodic fractional Schrödinger equation with cubic nonlinearity. In particular we prove local well-posedness in Sobolev spaces, for solutions evolving from rough initial data. In addition we show the existence of global-in-time infinite energy solutions. Our tools include a new Strichartz estimate on the torus along with ideas that Bourgain developed in ...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existence/uniqueness of solutions to Heat equation in extended Colombeau algebra

This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2017

ISSN: 0362-546X

DOI: 10.1016/j.na.2016.08.027