Optimal estimates for the fractional Hardy operator on variable exponent Lebesgue spaces
نویسندگان
چکیده
منابع مشابه
Affine Synthesis onto Lebesgue and Hardy Spaces
The affine synthesis operator Sc = P j>0 P k∈Zd cj,kψj,k is shown to map the mixed-norm sequence space `(`) surjectively onto L(R) under mild conditions on the synthesizer ψ ∈ L(R), 1 ≤ p < ∞, with R Rd ψ dx = 1. Here ψj,k(x) = |det aj |ψ(ajx−k), and the dilation matrices aj expand, for example aj = 2I . Affine synthesis further maps a discrete mixed Hardy space `(h) onto H(R). Therefore the H-...
متن کاملOperator Valued Hardy Spaces
We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...
متن کاملOn Variable Exponent Amalgam Spaces
We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...
متن کاملOptimal domain for the Hardy operator
We study the optimal domain for the Hardy operator considered with values in a rearrangement invariant space. In particular, this domain can be represented as the space of integrable functions with respect to a vector measure defined on a δ-ring. A precise description is given for the case of the minimal Lorentz spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2019
ISSN: 1331-4343
DOI: 10.7153/mia-2019-22-32