Optimal error estimates for semidiscrete phase relaxation models
نویسندگان
چکیده
منابع مشابه
Optimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations
In this paper, we introduce a general approach for proving optimal L2 error estimates for the semi-discrete local discontinuous Galerkin (LDG) methods solving linear high order wave equations. The optimal order of error estimates hold not only for the solution itself but also for the auxiliary variables in the LDG method approximating the various order derivatives of the solution. Several examp...
متن کاملOptimal Error Estimates of the Semidiscrete Central Discontinuous Galerkin Methods for Linear Hyperbolic Equations
We analyze the central discontinuous Galerkin (DG) method for time-dependent linear conservation laws. In one dimension, optimal a priori L error estimates of order k+1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k ≥ 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise te...
متن کاملError Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations
We consider the initial boundary value problem for the homogeneous time-fractional diffusion equation ∂ t u − ∆u = 0 (0 < α < 1) with initial condition u(x, 0) = v(x) and a homogeneous Dirichlet boundary condition in a bounded polygonal domain Ω. We shall study two semidiscrete approximation schemes, i.e., Galerkin FEM and lumped mass Galerkin FEM, by using piecewise linear functions. We establ...
متن کاملA Posteriori Error Estimates for a Semidiscrete Parabolic Integrodifferential Control on Multimeshes
We extend the existing techniques to study semidiscrete adaptive finite element approximation schemes for a constrained optimal control problem governed by parabolic integrodifferential equations. The control problem involves time accumulation and the control constrain is given in an integral obstacle sense. We first prove the uniqueness and existence of the solution of this optimal control pro...
متن کاملThe LIP+ -Stability and Error Estimates for a Relaxation Scheme
We show the discrete lip+-stability for a relaxation scheme proposed by Jin and Xin [Comm. Pure Appl. Math., 48 (1995), pp. 235–277] to approximate convex conservation laws. Equipped with the lip+-stability we obtain global error estimates in the spaces W s,p for −1 ≤ s ≤ 1/p, 1 ≤ p ≤ ∞ and pointwise error estimates for the approximate solution obtained by the relaxation scheme. The proof uses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 1997
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/1997310100911