منابع مشابه
Optimal Partitioning for Classification and Regression Trees
In designing a decision tree for classification or regression, one selects at each node a feature to be tested, and partitions the range of that feature into a small number of bins, each bin corresponding to a child of the node. When the feature’s range is discrete with N unordered outcomes, the optimal partition, that is, the partition minimizing an expected loss, is usually found by an exhaus...
متن کاملNear-Minimax Optimal Classification with Dyadic Classification Trees
This paper reports on a family of computationally practical classifiers that converge to the Bayes error at near-minimax optimal rates for a variety of distributions. The classifiers are based on dyadic classification trees (DCTs), which involve adaptively pruned partitions of the feature space. A key aspect of DCTs is their spatial adaptivity, which enables local (rather than global) fitting o...
متن کاملGlobally Optimal Fuzzy Decision Trees for Classification and Regression
ÐA fuzzy decision tree is constructed by allowing the possibility of partial membership of a point in the nodes that make up the tree structure. This extension of its expressive capabilities transforms the decision tree into a powerful functional approximant that incorporates features of connectionist methods, while remaining easily interpretable. Fuzzification is achieved by superimposing a fu...
متن کاملOptimal 2, 3-Trees
The 2,3-trees that are optimal in the sense of having minimal expected number of nodes visited per access are characterized in terms of their "profiles". The characterization leads directly to a linear-time algorithm for constructing a K-key optimal 2,3-tree for a sorted list of K keys. A number of results are derived that demonstrate how different in structure these optimal 2,3-trees are from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2017
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-017-5633-9