Optimal Approximation in Hilbert Spaces with Reproducing Kernel Functions
نویسندگان
چکیده
منابع مشابه
Distance Functions for Reproducing Kernel Hilbert Spaces
Suppose H is a space of functions on X. If H is a Hilbert space with reproducing kernel then that structure of H can be used to build distance functions on X. We describe some of those and their interpretations and interrelations. We also present some computational properties and examples.
متن کاملIterative Solution to Approximation in Reproducing Kernel Hilbert Spaces
A general framework for function approximation from finite data is presented based on reproducing kernel Hilbert spaces. Key results are summarised and the normal and regularised solutions are described. A potential limitation to these solutions for large data sets is the computational burden. An iterative approach to the least-squares normal solution is proposed to overcome this. Detailed proo...
متن کاملFrame Analysis and Approximation in Reproducing Kernel Hilbert Spaces
We consider frames F in a given Hilbert space, and we show that every F may be obtained in a constructive way from a reproducing kernel and an orthonormal basis in an ambient Hilbert space. The construction is operator-theoretic, building on a geometric formula for the analysis operator defined from F . Our focus is on the infinite-dimensional case where a priori estimates play a central role, ...
متن کاملReal reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
متن کاملOptimal Sampling Points in Reproducing Kernel Hilbert Spaces
The recent developments of basis pursuit and compressed sensing seek to extract information from as few samples as possible. In such applications, since the number of samples is restricted, one should deploy the sampling points wisely. We are motivated to study the optimal distribution of finite sampling points. Formulation under the framework of optimal reconstruction yields a minimization pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1970
ISSN: 0025-5718
DOI: 10.2307/2004625