Optically-Thin Broadband Graphene-Membrane Photodetector
نویسندگان
چکیده
منابع مشابه
Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction
In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibi...
متن کاملBroadband high photoresponse from pure monolayer graphene photodetector.
Graphene has attracted large interest in photonic applications owing to its promising optical properties, especially its ability to absorb light over a broad wavelength range, which has lead to several studies on pure monolayer graphene-based photodetectors. However, the maximum responsivity of these photodetectors is below 10 mA W(-1), which significantly limits their potential for application...
متن کاملOptically triggered infrared photodetector.
We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the...
متن کاملGraphene-antenna sandwich photodetector.
Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as ...
متن کاملMicrocavity-Integrated Graphene Photodetector
There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Pérot microcavi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2020
ISSN: 2079-4991
DOI: 10.3390/nano10030407