Optical Bistability at Low Light Level due to Collective Atomic Recoil
نویسندگان
چکیده
منابع مشابه
Optical bistability at low light level due to collective atomic recoil.
We demonstrate optical nonlinearities due to the interaction of weak optical fields with the collective motion of a strongly dispersive ultracold gas. The combination of a recoil-induced resonance in the high gain regime and optical waveguiding within the dispersive medium enables us to achieve a collective atomic cooperativity of 275+/-50 even in the absence of a cavity. As a result, we observ...
متن کاملTheory of a collective atomic recoil laser
We perform a study of a collective atomic recoil laser ~CARL! that goes beyond the initial growth period. The study is based on a theory that treats both internal and external degrees of atomic freedom quantum mechanically but regards the laser light as a classical field obeying Maxwell’s equations. We introduce the concepts of momentum families and diffraction groups and organize the matter wa...
متن کاملControlling optical bistability in a three-level atomic system
We have experimentally studied the optical bistable behavior in an optical ring cavity filled with a collection of three-level L-type rubidium atoms, interacting with two collinearly propagating laser beams. The bistability so observed is very sensitive to the induced atomic coherence in this electromagnetically induced transparency system or consequently to the altered nonlinearity in the syst...
متن کاملFour-wave mixing with self-phase matching due to collective atomic recoil.
We describe a method for nondegenerate four-wave-mixing in a cold sample of four-level atoms. An integral part of the four-wave-mixing process is a collective instability which spontaneously generates a periodic density modulation in the cold atomic sample with a period equal to half of the wavelength of the generated high-frequency optical field. Because of the generation of this density modul...
متن کاملSelf-organization effects and light amplification of collective atomic recoil motion in a harmonic trap
Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion bein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2008
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.101.063901