Operators on positive semidefinite inner product spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

Canonical matrices of isometric operators on indefinite inner product spaces

We give canonical matrices of a pair (A,B) consisting of a nondegenerate form B and a linear operator A satisfying B(Ax,Ay) = B(x, y) on a vector space over F in the following cases: • F is an algebraically closed field of characteristic different from 2 or a real closed field, and B is symmetric or skew-symmetric; • F is an algebraically closed field of characteristic 0 or the skew field of qu...

متن کامل

Frames in 2-inner Product Spaces

In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.

متن کامل

Atomic Systems in 2-inner Product Spaces

In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.

متن کامل

Math 172: Inner Product Spaces, Symmetric Operators, Orthogonality

Definition 1. An inner product on a complex vector space V is a map 〈., .〉 : V × V → C such that (i) 〈., .〉 is linear in the first slot: 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉, c1, c2 ∈ C, v1, v2, w ∈ V, (ii) 〈., .〉 is Hermitian symmetric: 〈v, w〉 = 〈w, v〉, with the bar denoting complex conjugate, (iii) 〈., .〉 is positive definite: v ∈ V ⇒ 〈v, v〉 ≥ 0, and 〈v, v〉 = 0⇔ v = 0. A vector space with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2020

ISSN: 0024-3795

DOI: 10.1016/j.laa.2020.03.004