Operator-valued <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e38" altimg="si3.svg"><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math> Fourier multipliers and stability theory for evolution equations
نویسندگان
چکیده
We give an overview of some recent results on operator-valued $(L^{p},L^{q})$ Fourier multipliers and stability theory for evolution equations. The aim is to provide a relatively nontechnical introduction the underlying ideas, emphasizing connection between two areas. also indicate how can be applied functional calculus theory.
منابع مشابه
OPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS
Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...
متن کاملOperator-valued Fourier Multipliers in Besov Spaces and Its Applications
In recent years, Fourier multiplier theorems in vector–valued function spaces have found many applications in embedding theorems of abstract function spaces and in theory of differential operator equations, especially in maximal regularity of parabolic and elliptic differential–operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensive...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملMultipliers in weighted settings and strong convergence of associated operator-valued Fourier series
This note describes the pleasant features that accrue in weighted settings when the partial sums of the operator-valued Fourier series corresponding to a multiplier function ψ : T → C are uniformly bounded in operator norm. This circle of ideas also includes a Tauberiantype condition on the multiplier function ψ sufficient to insure such uniform boundedness of partial sums. These considerations...
متن کاملRandom Fourier Features For Operator-Valued Kernels
Devoted to multi-task learning and structured output learning, operator-valued kernels provide a flexible tool to build vector-valued functions in the context of Reproducing Kernel Hilbert Spaces. To scale up these methods, we extend the celebrated Random Fourier Feature methodology to get an approximation of operatorvalued kernels. We propose a general principle for Operator-valued Random Four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2023
ISSN: ['0019-3577', '1872-6100']
DOI: https://doi.org/10.1016/j.indag.2022.08.008