Operator equalities and Characterizations of Orthogonality in Pre-Hilbert <i>C</i>*-Modules
نویسندگان
چکیده
In the first part of paper, we use states on $C^*$-algebras in order to establish some equivalent statements equality triangle inequality, as well parallelogram identity for elements a pre-Hilbert $C^*$-module. We also characterize case inequality adjointable operators Hilbert Then give certain necessary and sufficient conditions Pythagoras two vectors $C^*$-module under assumption that their inner product has negative real part. introduce concept orthogonality discuss its properties. describe this notion space terms law limit conditions. present several examples illustrate relationship between Birkhoff--James, Roberts, orthogonalities, usual framework $C^*$-modules.
منابع مشابه
Linear Orthogonality Preservers of Hilbert C∗-modules
We show in this paper that the module structure and the orthogonality structure of a Hilbert C∗-module determine its inner product structure. Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ : E → F is an A-module map satisfying 〈Φ(x),Φ(y)〉A = 0 whenever 〈x, y〉A = 0. Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F . More precisely, let JE be the cl...
متن کاملLinear Orthogonality Preservers of Hilbert Modules
We verify in this paper that the linearity and orthogonality structures of a (not necessarily local trivial) Hilbert bundle over a locally compact Hausdorff space Ω determine its unitary structure. In fact, as Hilbert bundles over Ω are exactly Hilbert C0(Ω)-modules, we have a more general set up. A C-linear map θ (not assumed to be bounded) between two Hilbert C∗-modules is said to be “orthogo...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2021
ISSN: ['1464-3839', '0013-0915']
DOI: https://doi.org/10.1017/s0013091521000341