One-point compactifications of intuitionistic locally compact spaces
نویسندگان
چکیده
منابع مشابه
One-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملOne-point Order-compactifications
We classify all one-point order-compactifications of a noncompact locally compact order-Hausdorff ordered topological space X. We give a necessary and sufficient condition for a one-point order-compactification of X to be a Priestley space. We show that although among the one-point order-compactifications of X there may not be a least one, there always is a largest one, which coincides with the...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملA point-free characterisation of Bishop locally compact metric spaces
We give a characterisation of Bishop locally compact metric spaces in terms of formal topology. To this end, we introduce the notion of inhabited enumerably locally compact regular formal topology, and show that the category of Bishop locally compact metric spaces is equivalent to the full subcategory of formal topologies consisting of those objects which are isomorphic to some inhabited enumer...
متن کاملLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1968
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-62-1-75-93